Inheritance

Lecture 17

Casting Base-Class Pointers to Derived-Clas
Pointers

class base void main()

{ protected: int x,y; {
public: base b(2,5); derived d(3);
base(int i=0,int j=0) { x=i; y=j;} base *basepointer=&b;

void display_base() derived *derivedpointer=&d,
{ cout<<"\n X:"<<x<<" Y:"<<y:}}; basepointer-

>display_base();
class derived : public base derivedpointer-

{ private: int z; | ?d'sdplaY—tdei()(; -
public: derived(int k=0) { z=k; } ei')‘;)eas‘;‘;'gir‘f{gr(_ erive
void display_der() derivedpointer-

{ cout<<"\n X:"<<x<<" Y:i"<<y<<" >display_der():
7:"<<z; }}; }

Using member functions

* Derived class
Cannot directly access private members of its base class

It can be modified using the base class member functions

Example

class base
{int x;
public: inty;

base(int i=0,int j=0) : x(i),y(j) { }
void display() { cout<<"\n X : "<<x<<" Y : "<<y; }};
class derived : public base
{int z;
public:
derived(int s) : z(s) { }
void d() { display(); cout<<"\n Z : "<<z; } };
void main()
{ derived d(5); d.d(); d.display(); }

Overriding base-class members in
derived class

* To override a base-class member function

In derived class, supply new version of that function
Same function name, different definitions

The scope resolution operator can then be used to access the
base class version from the derived class

Example

class base

{ protected: int x,y;

public:

base(int i=0,int j=0) { x=i; y=j;}
void display()

{ cout<<"\n X:"<<x<<" Y:"<<y; };

class derived : public base
{private: int z;
public:
derived(int k=0) { z=k; }
void display()

2:"<<z; 1}

void main()
{
base b(2,5); derived d(3);
b.display();
d.display();

}

{ cout<<"\n X:"<<x<<M Y <<y <<

Using constructor in derived
class

* Base class initializer
Uses member-initializer syntax

Can be provided in the derived class constructor to call the
base-class constructor explicitly

Otherwise base class’ default constructor called implicitly
Base-class constructors are not inherited by derived

classes

However, derived-class constructors and assignment operators can call
still them

Using constructor in derived
class

* Derived-class constructor

Calls the constructor for its base class first to initialize its
base-class members

If the derived-class constructor is omitted, its default
constructor calls the base-class’ default constructor

Using destructor in derived
class

* Destructors are called in the reverse order of
constructor calls.

Derived-class destructor is called before its base-class
destructor

Example 1

class base

{ protected: int x,y;

public: base(int i=0,int j=0)

{ x=i; y=i;

cout<<"\n Base class constructor!!";}
void display()

{ cout<<"\n X:"<<x<<" Y:"<<y;}

class derived : public base
{ private: int z;
public: derived(int k=0)
{ z=k; cout<<"\n Derived class
class constructor!!"; }
void display()

{ cout<<"\n X:"<<x<<"
Y:"<<y<<" Z:"<<Z; }

~base() ~derived() { cout<<"\n derived
{ cout<<"\n base class destructor !!" ;} class destructor !I" ;}
Iy ¥

void main()

{

derived d(3);
d.display();

}

class base

Example 2 { protected: int x,y;

public: base(int i=0,int j=0)

{x=i; y=j;

cout<<"\n Base class constructor!!";}
void display()

{ cout<<"\n X:"<<x<<" Y:"<<y;}

~base() { cout<<"\n base class destructor

;3
L

class derived : public base void main()
{ private: int z; {

public: derived(int i,int j,int k=0) : base(l,)) derived d(1,1,3):
{ z=k; cout<<"\n Derived class class constructor!!"; } d.display():

void display())

{ cout<<"\n X:"<<x<<" Yi'<<y<<" Z:"<<z; }

~derived() { cout<<"\n derived class destructor !I" ;}
J§

Asssignment

* Execution Of constructor and Destructor in various Types of
Inheritance.

